Samsung Foundry

Design Enablement for Advanced Technologies

Smart & Innovative Foundry Solution
Contents

- Landscape
 - Market Trends

- Readiness of Design Enablement
 - 32nm/28nm Design Enablement

- Exploring Design Challenges in advanced process
 - Technology Trends
 - Solutions

- Conclusion

Smart & Innovative Foundry Solution
Market Trends

Digital Convergence, Smart Information Hub ...

Smart & Innovative Foundry Solution
Mobile SOC Design Trends

Required Mobile SOC Spec.

- Mobile CPU
 - > 10,000 DMIPS

- DRAM Bandwidth
 - > 20GB/sec

- Multimedia Contents
 - > Full HD 1080P (3D & 3D GFX)

Bottleneck of Mobile SOC Design

- High Performance, Low Power
- Better Packaging
32/28nm Design Enablement
Samsung supports a comprehensive PDK (Process Design Kit)

- Major EDA tools are available from Design Enablement Partners

<table>
<thead>
<tr>
<th></th>
<th>Synopsys</th>
<th>Cadence</th>
<th>Mentor Graphics</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPICE</td>
<td>V</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>DRC</td>
<td>V</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>LVS</td>
<td>V</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>PEX</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>P&R Techfile</td>
<td>V</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>
Samsung supports **Product Proven Library IP** in 32nm and 28nm

Standards Cells
- sLVT(SG)
- LVT (SG)
- RVT (SG)

Memory
- SP SRAM (RA1)
- DP SRAM (RA2)
- 1P Reg. File (RF1)
- 2P Reg. File (RF2)
- Via-1 ROM (VROM)

GPIO
- 1.2V~1.8V GPIO
- 1.8V~3.3V GPIO

32LP / 28LPP

HD(L) High Density (Low Voltage)
HS(L) High Speed (Low Voltage)
LP Low Power

HD/HS/HSL
HD/HDL
HD/HS/HSL
HD/HS/HSL

HD
HD
HSL

EG + SG_RVT
EG + SG_RVT
Collaboration is delivering industry leading solutions

Excellence in essential building blocks for contemporary SOCs

From analog to processor cores

Various silicon proven IP

- **Processor Cores**
 - ARM7/9/11 Series
 - Cortex M/R/A Series

- **System IP**
 - Interconnect IP
 - Memory controllers
 - System Controllers
 - Peripherals
 - CoreSight

- **High Speed Interface IP**
 - SATA, PCIe
 - USB2/3, HSIC
 - LVDS, mini-LVDS, sub-LVDS
 - MIPI D/M-PHY
 - HDMI, DisplayPort

- **Multimedia IP**
 - JPEG Codec
 - NTSC/PAL encoder

- **Memory**
 - (HD/HS/LP)SRAM, VROM
 - eFuse, OTP

- **Embedded Memory**
 - ADC, DAC, AFE
 - PLL
 - Audio CODEC
 - Temp sensor, LDO

- **Memory Interface**
 - DDR2/3, LPDDR2/3

- **I/O**
 - In-line, staggered, multi-row
 - Wide-range GPIO

- **Standard Cell Library**
 - HD/HS
 - Multi Vth
 - Multi channel length
 - Power management kit

- **Mixed-Signal Core**
 - DDR2/3, LPDDR2/3

Smart & Innovative Foundry Solution
Samsung DFM

Samsung supports **an integrated DFM methodology** in 32nm and 28nm.

<table>
<thead>
<tr>
<th>Family</th>
<th>Kit</th>
<th>IP</th>
<th>Chip</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>32/28nm</td>
<td>32/28nm</td>
</tr>
<tr>
<td>Rule-based Verification</td>
<td>DRC</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>LUP (Litho Unfriendly Pattern)</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>PHC pattern matching (Process Hotspot Check)</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>MCD/MAS (Recommended Rule Deck)</td>
<td>R</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>VIA</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Model-based Verification</td>
<td>LHC (Litho Hotspot Checker)</td>
<td>M</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>FLHC (Fast Litho Hotspot Checker)</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>CMP</td>
<td>R</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>CAA</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Layout Enhancement</td>
<td>LUP-enabled router</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>PHR (Process Hotspot Repair)</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>Dummy Fill</td>
<td>M</td>
<td>M</td>
</tr>
</tbody>
</table>

M: Mandatory, R: Recommend
Samsung Design Methodology

- Samsung DM has been enabling the world’s best in-class products.

World 1st 1GHz Mobile Application Processors (S5PC110) at 1.2V in 45nm LP Process
Announced on Sept. 22nd, 2009

- 45nm Low power process
- Multi-V_{th} for power-performance opt.
- Aggressive process migration plan
- Over 7 hours of video playback: isolated power domain & bus architecture, dynamic on/off scheme

World’s 1st Mobile Application Processors in 32nm HK/MG Process
Announced at 2010 SMF (Taipei, Taiwan, Sept. 7th, 2010)

- 32nm Low power process
- Multi-V_{th}/LLP for power-performance opt.
- Successful low power DM migration (PG, MVDD, ABB, etc.)
- Statistical timing/power analysis added
- Unified LP design flow

Paradigm Shift
Deterministic → Statistical(μ, σ)

Pessimism reduction by using SSTA

Relative Margin for SSTA vs. Margin, AOCVM
Technology Trends and Design Challenges
Process Technology Trends

- 65nm
- 45nm
- 32/28nm
- 20nm
- 14nm

- Strained Si
- ULK
- Gate First
- Gate Last
- FinFET

- ISDA joint development
- Running in very high volumes
- Fueling the mobile generation

Smart & Innovative Foundry Solution
Design Challenges

- New patterning (DP, TP, and SADP)
- Complex ground and recommended rules
- 3D Transistor (FinFET) structure
- Scaled BEOL with new material
- Ever increasing on-chip variation
- FEOL/BEOL reliability characteristics

Smart & Innovative Foundry Solution
20nm Design Enablement - Challenges & Solutions
Key Technology Challenges

- Collaborate for optimal solutions

![Diagram showing double patterning and lithography techniques](image)

32/28nm vs 20nm
- Metal Pitch: 90nm (1X)
- # of Routing Rules: 242 (45nm), 306 (32nm), 574 (20nm)

Double Patterning (DP) Awareness
- DP rules
- DP-compliant IPs
- DP-aware routing
- DP rule checking

Smart & Innovative Foundry Solution
14nm Design Enablement - Challenges & Solutions
Key Technology Challenges

Technical Challenges

- 2D → 3D Device Modeling
- 2D → 3D Parasitic Extraction
- Process Variability Increase
- Continuous → Discrete Transistor Width ("Quantized width")
- Fine bit-cell control (1:1.2:1.5) → Coarse bit-cell Control (1:1;1, 1:2:2) in SRAM

How to solve it

- BSIM-CMG Model as a CMC Standard
- Extraction tool enhancement with High Accuracy (C: < +/-5%, R: < +/-3%)
- Statistical-based process-tolerant design
- Optimal Fin architecture through coarse-grain circuit optimization
- FinFET-optimized Read/Write assist introduction in SRAM

Smart & Innovative Foundry Solution
Conclusion

Product Proven Design and Process Technology in 32nm/28nm

- High-K/Metal Gate
- PDK / Library / IP / Design Methodology

Solutions for Advanced Technology Leadership

- Double Pattern
- 3D Transistors

Providing Comprehensive Enablement to meet customer needs

Smart & Innovative Foundry Solution
Thank You